RAG
RAG(检索增强生成)是一种人工智能框架,它将预先训练的语言模型(如GPT-4)与检索机制相结合。这种集成允许RAG从互联网、文档或数据库等来源检索特定数据或上下文,从而生成上下文相关且精确的响应。
RAG概述[ ]
RAG全称为检索增强生成,是指对大型语言模型输出进行优化,使其能够在生成响应之前引用训练数据来源之外的权威知识库。大型语言模型(LLM)用海量数据进行训练,使用数十亿个参数为回答问题、翻译语言和完成句子等任务生成原始输出。在 LLM 本就强大的功能基础上,RAG 将其扩展为能访问特定领域或组织的内部知识库,所有这些都无需重新训练模型。这是一种经济高效地改进 LLM 输出的方法,让它在各种情境下都能保持相关性、准确性和实用性。
RAG用途[ ]
LLM 是一项关键的人工智能(AI)技术,为智能聊天机器人和其他自然语言处理(NLP)应用程序提供支持。目标是通过交叉引用权威知识来源,创建能够在各种环境中回答用户问题的机器人。不幸的是,LLM 技术的本质在 LLM 响应中引入了不可预测性。此外,LLM 训练数据是静态的,并引入了其所掌握知识的截止日期。
LLM 面临的已知挑战包括:
- 在没有答案的情况下提供虚假信息;
- 当用户需要特定的当前响应时,提供过时或通用的信息;
- 从非权威来源创建响应;
- 由于术语混淆,不同的培训来源使用相同的术语来谈论不同的事情,因此会产生不准确的响应。
可以将大型语言模型看作是一个过于热情的新员工,他拒绝随时了解时事,但总是会绝对自信地回答每一个问题。不幸的是,这种态度会对用户的信任产生负面影响,这是不希望聊天机器人效仿的!
RAG 是解决其中一些挑战的一种方法。它会重定向 LLM,从权威的、预先确定的知识来源中检索相关信息。组织可以更好地控制生成的文本输出,并且用户可以深入了解 LLM 如何生成响应。
RAG优势[ ]
经济高效的实施[ ]
聊天机器人开发通常从基础模型开始。基础模型(FM)是在广泛的广义和未标记数据上训练的 API 可访问 LLM。针对组织或领域特定信息重新训练 FM 的计算和财务成本很高。RAG 是一种将新数据引入 LLM 的更加经济高效的方法。它使生成式人工智能技术更广泛地获得和使用。
当前信息[ ]
即使 LLM 的原始训练数据来源适合需求,但保持相关性也具有挑战性。RAG 允许开发人员为生成模型提供最新的研究、统计数据或新闻。他们可以使用 RAG 将 LLM 直接连接到实时社交媒体提要、新闻网站或其他经常更新的信息来源。然后,LLM 可以向用户提供最新信息。
增强用户信任度[ ]
RAG 允许 LLM 通过来源归属来呈现准确的信息。输出可以包括对来源的引文或引用。如果需要进一步说明或更详细的信息,用户也可以自己查找源文档。这可以增加对生成式人工智能解决方案的信任和信心。
更多开发人员控制权[ ]
借助 RAG,开发人员可以更高效地测试和改进他们的聊天应用程序。他们可以控制和更改 LLM 的信息来源,以适应不断变化的需求或跨职能使用。开发人员还可以将敏感信息的检索限制在不同的授权级别内,并确保 LLM 生成适当的响应。此外,如果 LLM 针对特定问题引用了错误的信息来源,他们还可以进行故障排除并进行修复。组织可以更自信地为更广泛的应用程序实施生成式人工智能技术。
RAG工作原理[ ]
创建外部数据[ ]
LLM 原始训练数据集之外的新数据称为外部数据。它可以来自多个数据来源,例如 API、数据库或文档存储库。数据可能以各种格式存在,例如文件、数据库记录或长篇文本。另一种称为嵌入语言模型的 AI 技术将数据转换为数字表示形式并将其存储在向量数据库中。这个过程会创建一个生成式人工智能模型可以理解的知识库。
检索相关信息[ ]
下一步是执行相关性搜索。用户查询将转换为向量表示形式,并与向量数据库匹配。例如,考虑一个可以回答组织的人力资源问题的智能聊天机器人。如果员工搜索:“我有多少年假?”,系统将检索年假政策文件以及员工个人过去的休假记录。这些特定文件将被退回,因为它们与员工输入的内容高度相关。相关性是使用数学向量计算和表示法计算和建立的。
增强LLM提示[ ]
接下来,RAG 模型通过在上下文中添加检索到的相关数据来增强用户输入(或提示)。此步骤使用提示工程技术与 LLM 进行有效沟通。增强提示允许大型语言模型为用户查询生成准确的答案。
更新外部数据[ ]
下一个问题可能是——如果外部数据过时了怎么办? 要维护当前信息以供检索,请异步更新文档并更新文档的嵌入表示形式。可以通过自动化实时流程或定期批处理来执行此操作。这是数据分析中常见的挑战——可以使用不同的数据科学方法进行变更管理。