一、Pod开销简介
在Kubernetes中,Pod的开销是一种独特的机制,用于计算Pod基础设施在容器请求和限制之上消耗的资源。启用Pod开销后,调度器在考虑Pod分配时,除了要考虑容器资源请求的总和外,还需要加入Pod的这部分额外开销。同时,Kubelet在确定pod cgroup的大小以及执行Pod驱逐排序时,也会将Pod的开销纳入考量。
要使用Pod开销,集群需要有一个定义了overhead字段的RuntimeClass。例如,某个为虚拟化工作负载设计的RuntimeClass可能会为每个Pod分配大约120MiB的内存和CPU来运行虚拟机和寄宿操作系统。
在调度 Pod 时,除了考虑容器资源请求的总和外,还要考虑 Pod 开销。 类似地,kubelet 将在确定 Pod cgroups 的大小和执行 Pod 驱逐排序时也会考虑 Pod 开销。
二、配置Pod开销
需要确保使用一个定义了 overhead 字段的 RuntimeClass。
三、使用示例
要使用 Pod 开销,需要一个定义了 overhead 字段的 RuntimeClass。 作为例子,下面的 RuntimeClass 定义中包含一个虚拟化所用的容器运行时, RuntimeClass 如下,其中每个 Pod 大约使用 120MiB 用来运行虚拟机和寄宿操作系统:
apiVersion: node.k8s.io/v1 kind: RuntimeClass metadata: name: kata-fc handler: kata-fc overhead: podFixed: memory: "120Mi" cpu: "250m"
通过指定 kata-fc RuntimeClass 处理程序创建的工作负载会将内存和 CPU 开销计入资源配额计算、节点调度以及 Pod cgroup 尺寸确定。
假设我们运行下面给出的工作负载示例 test-pod:
apiVersion: v1 kind: Pod metadata: name: test-pod spec: runtimeClassName: kata-fc containers: - name: busybox-ctr image: busybox:1.28 stdin: true tty: true resources: limits: cpu: 500m memory: 100Mi - name: nginx-ctr image: nginx resources: limits: cpu: 1500m memory: 100Mi
在准入阶段 RuntimeClass 准入控制器 更新工作负载的 PodSpec 以包含 RuntimeClass 中定义的 overhead。如果 PodSpec 中已定义该字段,该 Pod 将会被拒绝。 在这个例子中,由于只指定了 RuntimeClass 名称,所以准入控制器更新了 Pod,使之包含 overhead。
在 RuntimeClass 准入控制器进行修改后,可以查看更新后的 Pod 开销值:
kubectl get pod test-pod -o jsonpath='{.spec.overhead}'
输出:
map[cpu:250m memory:120Mi]
如果定义了 ResourceQuota, 则容器请求的总量以及 overhead 字段都将计算在内。
当 kube-scheduler 决定在哪一个节点调度运行新的 Pod 时,调度器会兼顾该 Pod 的 overhead 以及该 Pod 的容器请求总量。在这个示例中,调度器将资源请求和开销相加, 然后寻找具备 2.25 CPU 和 320 MiB 内存可用的节点。一旦 Pod 被调度到了某个节点, 该节点上的 kubelet 将为该 Pod 新建一个 cgroup。 底层容器运行时将在这个 Pod 中创建容器。
如果该资源对每一个容器都定义了一个限制(定义了限制值的 Guaranteed QoS 或者 Burstable QoS),kubelet 会为与该资源(CPU 的 cpu.cfs_quota_us 以及内存的 memory.limit_in_bytes) 相关的 Pod cgroup 设定一个上限。该上限基于 PodSpec 中定义的容器限制总量与 overhead 之和。
对于 CPU,如果 Pod 的 QoS 是 Guaranteed 或者 Burstable,kubelet 会基于容器请求总量与 PodSpec 中定义的 overhead 之和设置 cpu.shares。
请看这个例子,验证工作负载的容器请求:
kubectl get pod test-pod -o jsonpath='{.spec.containers[*].resources.limits}'
容器请求总计 2000m CPU 和 200MiB 内存:
map[cpu: 500m memory:100Mi] map[cpu:1500m memory:100Mi]
对照从节点观察到的情况来检查一下:
kubectl describe node | grep test-pod -B2
该输出显示请求了 2250m CPU 以及 320MiB 内存。请求包含了 Pod 开销在内:
Namespace Name CPU Requests CPU Limits Memory Requests Memory Limits AGE
--------- ---- ------------ ---------- --------------- ------------- ---
default test-pod 2250m (56%) 2250m (56%) 320Mi (1%) 320Mi (1%) 36m
四、验证Pod cgroup限制
在工作负载所运行的节点上检查 Pod 的内存 cgroups。在接下来的例子中, 将在该节点上使用具备 CRI 兼容的容器运行时命令行工具 crictl,这是一个显示 Pod 开销行为的高级示例, 预计用户不需要直接在节点上检查 cgroups。 首先在特定的节点上确定该 Pod 的标识符:
# 在该 Pod 被调度到的节点上执行如下命令: POD_ID="$(sudo crictl pods --name test-pod -q)"
可以依此判断该 Pod 的 cgroup 路径:
# 在该 Pod 被调度到的节点上执行如下命令: sudo crictl inspectp -o=json $POD_ID | grep cgroupsPath
执行结果的 cgroup 路径中包含了该 Pod 的 pause 容器。Pod 级别的 cgroup 在即上一层目录。
"cgroupsPath": "/kubepods/podd7f4b509-cf94-4951-9417-d1087c92a5b2/7ccf55aee35dd16aca4189c952d83487297f3cd760f1bbf09620e206e7d0c27a"
在这个例子中,该 Pod 的 cgroup 路径是 kubepods/podd7f4b509-cf94-4951-9417-d1087c92a5b2。 验证内存的 Pod 级别 cgroup 设置:
# 在该 Pod 被调度到的节点上执行这个命令。 # 另外,修改 cgroup 的名称以匹配为该 Pod 分配的 cgroup。 cat /sys/fs/cgroup/memory/kubepods/podd7f4b509-cf94-4951-9417-d1087c92a5b2/memory.limit_in_bytes
和预期的一样,这一数值为 320 MiB。
335544320
五、可观察性
在 kube-state-metrics 中可以通过 kube_pod_overhead_* 指标来协助确定何时使用 Pod 开销, 以及协助观察以一个既定开销运行的工作负载的稳定性。 该特性在 kube-state-metrics 的 1.9 发行版本中不可用,不过预计将在后续版本中发布。 在此之前,用户需要从源代码构建 kube-state-metrics。